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A resum6 of Boys' approach to configuration interaction calculations is presented, and a program 
suitable to perform such calculations is described in some detail. The results of a preliminary 
calculation on water, together with some timings are presented. 
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I. Introduction 

If one chooses to attempt approximate solutions of SchriSdinger's equation 
for bound states of atoms and molecules, with the aid of the linear variation 
theorem, then one begins with the ansatz 

~o= ~ Ck4'k (1) 
k=l  

and is eventually faced with solving the secular problem 

H c = E S c .  (2) 

Here H and S are square matrices with elements 

Hij = ~ ~b* H cI) jdz  (3a) 

Sij = ~ cb* ~b jdz  (3b) 

where H is the Schr6dinger hamiltonian for the problem 

H = ~ H(i) + ~, H(i, j)  (4a) 
i i > j  

with 

1 
H(i) = - ~ A i + ~ Z~jr~i (4b) 

2 

H(ij) = 1/rij. (4c) 
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The eigenvectors c consist of those coefficients in (1) which minimize the 
energy E. 

Nowadays the solution of the eigenvalue problem does not present any 
particular computational difficulties, but obtaining the matrix elements (3) and 
(4) still presents a formidable computational problem.  

In quantum chemical problems the ~k are usually taken to be anti- 
symmetrised products of one particle space and spin functions (spin orbitals) and 
it can be seen at once that with this choice the matrix elements (3) reduce to 
weighted sums of one- and two-electron (three and six dimensional) integrals. 
The evaluation of these integrals is again a matter of great computational 
difficulty, with consequences for the evaluation of the matrix elements to which 
we shall refer later. 

If one chooses the ~k as antisymmetrised spin-orbital products, then a still 
further choice is left open, that of choosing the space parts of the functions 
(orbitals) as members or not, of an orthogonal set. 

If one chooses them to form an orthogonal set then many simplifications 
appear in the formulae for the matrix elements. However, it has not so far been 
found possible to evaluate directly the integrals involved over any physically 
meaningful or useful set of orthogonal orbitals. Generally orthogonal orbitals 
are constructed as linear combinations of primitive functions, by some means. 
The primitive functions are chosen for the ease with which integrals between them 
may be evaluated and also on grounds of physical meaning. Thus before one can 
actually evaluate the matrix elements in an integral basis one has generally to 
face the problem of transforming the integrals from the primitive basis to the 
orthogonal basis. Only recently has this problem been solved in a computationally 
efficient way, and this has been discussed by one of us (G.H.F.D.) in another 
paper [1]. In this context it is the custom to refer to the primitive functions as 
atomic orbitals (AO's) and to the orthogonal functions as molecular orbitals 
(MO's) because the orthogonal functions were often found as solutions of 
Roothaan's equations. It is also quite customary to refer to the process of con- 
structing the linear variation functions as configuration interaction (CI). 

If one does not require the orbitals to form an orthogonal set then one has 
no transformation problem but the weighting function in the integral sums then 
involves the evaluation of a rather nasty co-factor expression (see for example [21 
pp. 50-51) and it seems likely that the amount of computational effort involved 
in evaluating the matrix elements here, may well in fact be very similar to that 
involved in transforming and evaluating in the orthogonal basis. This is, 
however, as yet an undecided question. 

In this communication we shall confine attention to matrix elements in an 
orthogonal basis, and because of this we shall be able to consider a somewhat 
more general functional form for the ~b k than the relatively simple antisymmetrised 
product. This functional form (which we shall describe in more detail later) we 
shall, following the usage of Boys, call a bonded function. It may be thought as a 
linear combination of antisymmetrised products, so designed as to be a spin- 
eigenfunction and to have the required space symmetry properties. Such a 
functional form has the further advantage that it is easy to generate from any 
given orbital set all those bonded functions having the same spin-eigenvalue 
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(corresponding to the different canonical structures of classical valence bond 
theory (see e.g. [2] p. 67)) so that one may properly consider all allowed spin- 
coupling schemes in any problem, in an economical way. 

Some of the earliest considerations of the problem of generating bonded 
functions and calculating matrix elements between them, from the standpoint of 
computational feasibility, are found in the work of McWeeny [-3] and of Boys 
and his co-workers ([4, 5]). Subsequently these approaches were somewhat 
generalised and extended by McWeeny and Cooper [6] and by Sutcliffe [-7] 
respectively. We shall not concern ourselves here with the problem of generating 
a suitable set of bonded functions but will regard such a set as given, and con- 
centrate on the computational problems raised by finding the formula for the 
matrix element between an arbitary pair of bonded functions and of sub- 
sequently substituting the values of the integrals into this formula to obtain the 
required matrix element. We shall call the first part of this process (again 
following Boys) the projective reduction of a matrix element to yield a symbolic 
matrix element, and the last part that of forming the numerical matrix element, 
by resolving the symbolic references. 

From a more general point of view the symbolic matrix element (or indeed a 
complete list of such elements) can be regarded as a special kind of program, 
according to the execution of which, the numerical value is computed. The 
program which generates the symbolic matrix elements can then be regarded as 
a compiler, generating from input, the symbolic matrix element regarded as a 
program, according to the syntax rules and so on of projective reduction. The 
formation of numerical matrix elements may then be regarded as interpreting 
the compiled symbolic matrix element program. 

In certain cases, as Roos [8] has shown, it is possible to look at this problem 
from a different viewpoint. If one restricts the structure of the bonded functions 
in certain ways, then one can so arrange matters that only a small number of 
possible types of symbolic matrix elements occur. In this kind of situation instead 
of resolving the references in the symbolic matrix element to the numerical 
values of the integrals, it is more effective to use the integral type as a symbolic 
reference and to resolve this reference to all the possible numerical matrix 
elements. This latter process is very like the technique used, for example, in the 
Polyatom [-9] and Munich [10] SCF routine for making up the J and K matrices 
and the HF-matrix, resp., by tagging each two electron integral according to 
type and processing it as a potential contributer to a number of matrix elements 
according to the tag carried. While recognising the outstanding suitability of 
Roos' technique in particular cases (for example the classical case of configuration 
interaction involving all single and double substitutions in a closed shell) it is 
difficult to see how it could be made to operate in the general case of arbitary 
bonded functions. We shall therefore not consider it further here since our 
interest is precisely in this latter situation. 

There have, in fact, been quite a number of earlier attempts to treat the 
problem in the same broad general way that we are proposing, the classical work 
being that of Boys and Reeves (see [11]) and work by others arising from that. 
However, the present state of the art appears to be that still it is not possible to 
regard the calculation of a general say 5000 configuration wave function, as a 
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routine affair because the computing times involved remain much too great. 
That this is the case, is almost certainly due (in part) to the fact that no really 
effective algorithm has been available for interpreting the compiled symbolic 
matrix element program. Such an algorithm has now been designed, making use 
of a reordering procedure for large lists of indexed quantities. The algorithm, 
which will be described later, has been implemented within the scope and frame- 
work of the Munich program system [10] and has been extensively tested and 
found to perform well 1 

2. Theory 

The bonded functions �9 which form the basis of our analysis are defined as 
follows 

4 = ~E4~ 45] [4344]... E4~- ~4~p] [4~p+ 1]... [4.] (5) 

where the spin coupled pairs are 

[-4i4f] = 4i(i) 4j(J) {a(i) flU) - fl(i) ~(j)} 4i # 41 (5a) 

= 41(i) 4j(J) ~(i) fl(j) 4i = 4j (5a') 

and the unpaired orbital is 

[4i] = 4i(i) ~(i). (5b) 

The symbol d denotes an antisymmetrizing operator that produces a nor- 
malized, completely antisymmetric wavefunction. The functions 4~ are assumed 
to be orthonormal. If 4~ = 4j, then the orbitals must occur in the same spin 
coupled pair or the function vanishes. 

A bonded function composed of n orbitals of which c are unpaired and 
containing x identical orbitals spin coupled (identical pairs) may be written as 
the sum of 2 (n-c)/2-x determinants. A given set of orbitals 4 may be bracketed 
together in a number of different ways. A linear independent set of bonded 
functions (canonical set) may be formed according to the following rules: 
(a) In each bonded function identical orbitals must be bracketed together (spin 
coupled). (b) To the remaining orbitals the remaining left and right brackets must 
be assigned. These have to be assigned one to each orbital in all possible ways 
consistent with there being at least one more left bracket to the left of any right 
bracket than there are right brackets. The brackets are associated by the 
ordinary laws of algebra and the orbitals assigned to each pair of brackets, spin 
coupled. The excess of left brackets (if any) represents the uncoupled orbitals. 

The total number of determinant product terms in the product of two 
bonded functions �9 K and �9 K, containing x and x' identical pairs, respectively, 
is 2 ("-c)-(~+x') These determinant product terms must be enumerated, the 
required matrix element between the determinants must be found, and all the 

1 After completing this work the authors found that a very similar algorithm had been developed 
simultaneously by Yoshimine [12]. The relative merit of this and the procedure described here is 
still an open question. 
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contributing factors summed to give the final matrix elements between the 
bonded functions. The matrix elements of the unity and the spinless Hamiltonian 
operator between the bonded functions 4) K and 4~K, are determined to be of the 
form 

SKK, = F ~ Qi ~ ~b~(1) q~'(1) dz~ (6a) 
i 

HKK, = F ~ Q~ ~ q~(1) U(1) ~bf'(1) dz~ 
i 

+ ~ Q~jq'gj ~ q~(t) ~b~'(1) H(1, 2) q~'(2) q5~'(2) dz~ dz2 (6b) 
i , j  

+ qij 5 q~(1) q~'(t) U(1, 2) q~y(2) q5~'(2) dz, dz 2 . 

The coefficients F, Qi, Qii, qo, and q~j are constants which are independent of the 
form of the orbitals and of the operators H(1) and H(1, 2) and depend only on the 
bracket structure of the bonded functions. The process of reducing the many 
dimensional integrals SKK" and HKK, to a combination of weighted integrals 
over one- and two-electron coordinate integrals has been termed projective 
reduction. This projective reduction has to be performed for each matrix element 
separately according to the following rules: 

Let the orbitals q~ that compose 4~ r be written in a line and the orbitals ~b~' 
that compose 4~ K, be written down below them. Now let the orbitals of 4~ r 
and q~r' be rearranged so that 

1. identical orbitals appear opposite one another as far as possible, 
2. spin coupled pairs are kept adjacent as far as possible. 
Rule (1) is applied before rule (2) above, and it will only be in the case where 

the orbitals of 4~K differ from ~b~, that identical orbitals will not appear opposite 
one another. Rule (1) is applied by associating each orbital in q~K with the same 
orbital in 4~ K, until all identical orbitals have been associated. The nonidentical 
orbitals are then paired and the resulting diagram rearranged so as to confirm 
with rule (2). In particular cases the diagram produced is not unique, but all such 
diagrams can be shown to be equivalent. It should be noticed that the orbital 
subscripts in Eqs. (6a) and (6b) refer to the orbital order after this re-ordering 
has been done. The numerical value of the subscript is, of course, of no conse- 
quence, it is simply required that q~ be opposite ~b~' and so on after re-ordering. 

Patterns are formed by joining orbitals which have been arranged adjacent 
to each other according to the above rules by a solid line, and connecting all spin 
coupled pairs by a dotted line. Any diagram consists generally of two types of 
patterns. Those which begin and end on an unpaired orbital and those which 
close back on themselves. The former are referred to as chains, the latter as cycles. 
The chains are of two types: those which begin in one function 4~r and end in the 
other q~K,, these are called odd chains since they involve an odd number of 
vertical links; and those which begin in one function and end in the same 
function are called even chains. It is clear that there must be just as many chains 
in a diagram as there are unpaired orbitals in a bonded function. If there are even 
chains then there must be at least two and generally an even number of even 
chains. 
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Tab le  1. Coefficients for two-e lec t ron  in tegra ls  

i j Pij Pa t t e rn  qij 

Cycle  Cycle  ] - 1 D - � 8 9  
Cycle  o cha in  ~ + 1 D - �89 
o cha in  Cycle  J - 1 S + l 

+ 1  S - 2  

o cha in  o cha in  - 1 D 0 
+ 1  D - 1  
- 1  S + 1  
+ 1  S - 2  

e cha in  e cha in  - 1 D - 1 

+ 1  D + 1  

It is necessary to have a convention about where chains begin. The first odd 
chain is taken to begin at the lowest numbered unpaired orbital in the top line 
of the diagram. The next odd chain starts at the next lowest unpaired orbital and 
so on. The first even chain is defined like the first odd chain, the second even chain 
starts from the lowest numbered available unpaired orbital in the bottom line 
of the diagram and so on. 

Inspection shows that if any even chains are present then there must be one 
spin mismatched for each even chain,' between the determinants. By convention 
this is taken to be at the highest numbered orbital in the chain. 

A parity is assigned to each vertical line within a pattern, the lowest 
numbered line being even, the next odd, the next even, and so on. 

Now the patterns can be used to determine the sign of the initial diagram 
and also to write down the matrix elements between bonded functions in terms 
of integrals over the orbitals of q5 K, and of q~r,. 

The results are given by formulas (6) and Table 1. The notation convention 
adopted is as follows: The parity of a given position (+1 or - 1 )  is denoted 
by Pi. The product PiPj is written as pij.. If i and j occur in different patterns this 
is denoted by D, if they occur in the same pattern this is denoted by the letter S. 
The function Q~ is zero, if there exist an r ~ i, such that K K' ~b, va q~r , and it is one 
otherwise. Similarly the function Qij is defined to be zero, if there exists an 
r r i,j, such that ~b~ r q~', and to be one otherwise. The constant F is given by 

F = ( -  1) ~+ ~, (_�89 (_  2)J/2 (7) 

where n the number of electrons, h the total number of (even and odd) chains, 
and m is the number of cycles; J is the number of pairs for which qS~Y = @: but 
~b~'r qSf' or vice versa; o- is the signature of the permutation of the unpaired 
orbitals of the q~: back to their order in ~K and a' is the signature of the q~f' back 
to their order in ~K" Odd chain is abbreviated o chain, and even chain by e chain. 

There are no one-electron terms from diagrams containing two even chains, 
a n d  there are no terms at all from diagrams containing more than two even 
chains. 
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When there are no even chains, q'i, = 1, and if there are two even chains, 
i K K K '  K / qij = 0. When q5 i = ~bj, and/or q~f r qSj qij = O. If there are two even chains and 

i and j are in the same chain, q~j = O. Otherwise qi~ is given in Table 1. 

3. Computational Realisation 

The "best", that is the most "economic" computer algorithm has to minimize 
the following quantities: a) mathematical operations, b) number of processor 
storage locations, c) amount of data transferred to or/and from external storage, 
and d) number of transferred blocks of data. An algorithm that fulfills these four 
conditions uses the minimum of central processor and elapses time, and therefore 
is the cheapest. Normally, each algorithm is a compromise with these four 
conditions, resulting from the characteristics of the computer it is (supposed) 
to be implemented on. 

The calculation of matrix elements between many electron wavefunctions 
of arbitrary spin states is especially difficult, because normally not all one- and 
two-electron integrals between the functions ~ used to construct the wave- 
function can be held in processor storage simultaneously. In this case data transfer 
to and from external storage becomes very critical and advanced techniques have 
to be applied to solve this problem. For the present problem an efficient 
algorithm has been designed, implemented and extensively tested. It will be 
described, its relation to similar algorithms will be discussed, and its present 
implementation will be outlined: For convenience, the number of matrix 
elements the numerical values of which can be formed in processor storage 
simultaneously is called a core-load of matrix elements, the number of symbolic 
matrix elements that can be held (actually: the symbolic references of which can 
be reordered according to one index) simultaneously on direct access external 
storage is called a "disk"-load of matrix elements, and the number of integrals 
that can be kept in processor storage (actually: directly referenced simultaneously) 
is called a core-load of integrals. 

Each symbolic matrix element contains one or more references to one- 
and/or two-electron integrals. Each of these references is uniquely identified by 
two numbers: The sequence number of the matrix element it contributes to, and 
the sequence number of the referenced integral. To avoid time consuming search- 
ing, these references have to be ordered in such a way, that the quantities who's 
reference are to b~ resolved can be processed "sequentially". Normally, this 
makes one or more reorderings of the references necessary. Based on this 
general idea an efficient algorithm has been developed for computing numerical 
matrix elements which essentially consists of the following steps 2. 

Step a) Compute a list of symbolic matrix elements. 
Step b) Order the symbolic contributions, for a disk-load of matrix elements 

at a time, so that consecutive symbolic contributions refer to core loads of 
integrals in ascending sequence. 

Step c) Resolve the references to the integrals. 

2 Starting from a different analysis, M. Yoshimine essentially arrived at the same result [12]. 



112 G . H . F .  Diercksen and B. T. Sutcliffe 

Table 2. Munich program system - Configuration interaction package release 0 (March 1973). 
Timing examplea: molecular orbitals 35; configurations (all double+single sub, except for the 

K-shell) 2063; total SCF energy -76.05199 a.u.; total CI energy -76.26620 a.u. 

Total Data Time A time Number of 

storage storage Step b) Step c) Step e) Total (min) (%) reads of 

(kBytes) (kBytes) (rain) (rain) (min) (rain) int. list 

600 453 5.7062 0.5947 0.5523 6.8573 8 
540 393 5.7088 0.6025 0.5595 6.8713 0.0176 0.25 9 
480 333 5.7225 0.6085 0.5762 6.9075 0.0538 0.78 11 
420 273 5.7088 0.6172 0.5928 6.9192 0.0655 0.96 13 
360 213 5.8029 0.6388 0.6312 7.0733 0.2196 3.2 17 
300 153 5.8167 0.7287 0.7378 7.2835 0.4298 6.3 25 
240 93 5.8940 0.8900 0.9220 7.7063 0.8526 12.4 43 

IBM 360/91. 

Step d) Order the numerical contributions, so that consecutive elements refer 
to core-loads of matrix elements in ascending order. Actually, within each 
sequence of numerical contributions built from the same core-load of integrals, 
the elements are ordered according to matrix elements in ascending order. 
Therefore reordering is not necessary, if the list can be accessed directly 
(randomly). 

Step e) Resolve the references of the numerical contributions to the matrix 
elements, and compute the matrix elements, a core-load at a time. 

It is important to notice, that in this algorithm the list of integrals has only 
to be read as many times as there are disk-loads of matrix elements. As normally 
the disk (direct access) space available is rather large, one or very few reads of 
the integral list are necessary. 

At present this algorithm has been implemented in a slightly different way: 
Essentially Step b) of the above sequence is applied to each core-load of matrix 
elements separately, instead to each disk-load. This modification of the algorithm 
needs relatively little disk space, approximately the order of magnitude of 
processor storage available for the step, and it avoids Step d) completely. But 
the list of integrals has to be read as many times as there are core-loads of matrix 
elements, which essentially means more often, because usually core-loads are 
smaller than disk-loads of matrix elements. But it has been found (compare 
Table 2) that the increase of CPU time with increasing numbers of reads of the 
integral list is unexpectedly small, while the elapsed time is dependent on the 
number of reads of the integral list, as is to be expected. Normally, the complete 
list of symbolic matrix elements is generated in Step b). This list can be used to 
construct the list of numerical matrix elements for any problems where the 
following quantities agree in number and/or type: molecular symmetry (if 
explicity taken into account), electrons, molecular orbitals, and configurations. 
But with increasing number of electrons and configurations, this list of symbolic 
matrix elements will become excedingly large and it might become unreasonable 
to keep it. In this case the above algorithm [Steps a) to e)] has to be applied to 
each disk-load of matrix elements separately. 
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In the following paragraphs some of the approaches used in the present 
algorithm are discussed in some more detail, to show the critical features of their 
performance: 

A very efficient algorithm for the projective reduction of matrix elements has 
been described by Reeves [11], and has been implemented in the present 
program with minor (technical) modifications. Timing tests revealed, that the 
initial "pairing" of orbitals between bonded functions is very time consuming, and 
in the test case actually used up to 65 % of the total CPU time necessary for the 
projective reduction. Therefore this procedure has been carefully analysed. 

The procedure consists in "pairing" the orbitals between two bonded 
functions one-to-one so as to minimize the number of noncoincidences and to 
build appropriate cross-reference tables to be used in the actual projective 
reduction. This "pairing" may be terminated if the third noncoincidence is found, 
because if there are three or more noncoincident orbitals between bonded 
functions the matrix element between these functions is identical zero. This 
process of pairing has to be done for the orbitals between the first members of 
all orbital configurations, and in case less than three noncoincidences have been 
found for the orbitals, between all other members of these orbital configurations. 

Two classes of approaches are possible for this "pairing", one class involving 
explicit searching, one class involving no searching. We have currently imple- 
mented an algorithm with searching gaining speed because it has been 
programmed in IBM 360 Assembler Language and is largely formed by program 
sections allowing the computer IBM 360/91 to run a special state (loop mode). 
However, we are actively investigating algorithms that do not involve searching 
in the hope of making further time savings [13]. 

Throughout  the present program linear indexin9 and table look up has been 
used. In particular: all symbolic references are given as to core/disk load number 
and sequence number (within the load). The variables Gamma and Q are 
identified by entry points to appropriate tables. 

Timing examples of the present program release are given in Table 2 in which 
the CI problem is based on a SCF problem solved for the water molecule [-14]. 
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